面向互联网复杂语境的文本隐式情感分析研究
  
  
  
  
    
    
      
    
    1月 1, 2022
  
  
  
  
  
  
  
  
  
  
  
 
    
  随着互联网语境的复杂性越来越强,含有隐式情感的文本越来越多,如舆情系统中反讽等隐式情感在互联网频繁出现,给目前的情感分析系统带来了巨大的压力和挑战。隐式情感分析则通过对典型隐式情感,进行分析识别。
出版物
        我们提出了 AdaInfer,一种基于统计特征自适应提前终止 LLM 推理的轻量算法,可在不修改模型的情况下减少 最高 43% 的计算量,性能下降不足 1%。
      
    
    
    
        
  
      Siqi Fan, 
      Xin Jiang, 
      Xuying Meng, 
      Peng Han, 
      Shuo Shang, 
      Aixin Sun, 
      Yequan Wang
      
      
    
        我们提出了 Few-Shot Detector (FSD),一种通过学习度量空间、仅需少量样本即可识别未见伪造图像的检测器,能在无需再训练的情况下实现 准确率提升 11.6% 并保持强泛化能力。
      
    
    
    
        
  
      Shiyu Wu, 
      Jing Liu, 
      Jing Li, 
      Yequan Wang
      
      
    
        To lower the computional cost of training large model, we focus on speeding up pre-training by progressively growing from a small Transformer structure to a large one.
      
    
    
    
        
  
      Yiqun Yao, 
      Zheng Zhang, 
      Jing Li, 
      Yequan Wang
      
      
    
        We approach comparative opinion classification through prompt learning, taking the advantage of embedded knowledge in pre-trained language model. We design a twin framework with dual prompts, named CORT. This extremely simple model delivers state-of-the-art and robust performance on all benchmark datasets for comparative opinion classification. We believe CORT well serves as a new baseline for comparative opinion classification.
      
    
    
    
        
  
      Yequan Wang, 
      Hengran Zhang, 
      Aixin Sun, 
      Xuying Meng
      
      
    
        We propose the Context and Former-Label Enhanced Net (CofeNet) for quotation extraction. CofeNet is able to extract complicated quotations with components of variable lengths and complicated structures. On two public datasets and one proprietary dataset, we show that our achieves state-of-the-art performance on complicated quotation extraction.
      
    
    
    
        
  
      Yequan Wang, 
      Xiang Li, 
      Aixin Sun, 
      Xuying Meng, 
      Huaming Liao, 
      Jiafeng Guo
      
      
    
 
      