王业全的学术主页
王业全的学术主页
主页
项目
论文
专利
报告
联系方式
浅色
深色
自动
中文 (简体)
中文 (简体)
English
Foundation Model
Not All Layers of LLMs Are Necessary During Inference
我们提出了 AdaInfer,一种基于统计特征自适应提前终止 LLM 推理的轻量算法,可在不修改模型的情况下减少 最高 43% 的计算量,性能下降不足 1%。
Siqi Fan
,
Xin Jiang
,
Xuying Meng
,
Peng Han
,
Shuo Shang
,
Aixin Sun
,
Yequan Wang
PDF
引用
项目
项目
Few-Shot Learner Generalizes Across AI-Generated Image Detection
我们提出了 Few-Shot Detector (FSD),一种通过学习度量空间、仅需少量样本即可识别未见伪造图像的检测器,能在无需再训练的情况下实现 准确率提升 11.6% 并保持强泛化能力。
Shiyu Wu
,
Jing Liu
,
Jing Li
,
Yequan Wang
PDF
引用
代码
项目
项目
52B to 1T: Lessons Learned via Tele-FLM Series
As scaling laws underscore the potential of increasing model sizes, the academic community has intensified its investigations into LLMs with capacities exceeding 50 billion parameters. This technical report builds on our prior work with Tele-FLM (also known as FLM-2), a publicly available 52-billion-parameter model.
Xiang Li
,
Yiqun Yao
,
Xin Jiang
,
Xuezhi Fang
,
China Telecom
,
Yequan Wang
,
Zhongjiang He
,
Zhongyuan Wang
,
Xuelong Li
,
Tiejun Huang
PDF
引用
项目
Tele-FLM-1T
Tele-FLM
Masked Structural Growth for 2x Faster Language Model Pre-training
To lower the computional cost of training large model, we focus on speeding up pre-training by progressively growing from a small Transformer structure to a large one.
Yiqun Yao
,
Zheng Zhang
,
Jing Li
,
Yequan Wang
PDF
引用
代码
项目
项目
Research without Re-search: Maximal Update Parametrization Yields Accurate Loss Prediction across Scales
We find that Maximal Update parametrization (uP) enables accurate fitting of scaling laws for hyperparameters close to common loss basins, without any search. Thus, different models can be directly compared on large scales with loss prediction even before the training starts. We propose a new paradigm as a first step towards reliable academic research for any model scale without heavy computation.
Yiqun Yao
,
Yequan Wang
PDF
引用
项目
引用
×